For deep holes in components to be accurate – such as surgical tooling – they need to uphold tight concentricity tolerances. In gundrilling, this is best achieved with counter-rotation. For a manufacturer, this is vital. For a surgeon and patient, it can make all the difference.
Manufacturers achieve concentricity tolerances when the hole follows the desired axis of the part, eliminating drift from the point of entry to the exit. In a round part with on-center drilling, this is easily illustrated; some applications may include off-center deep holes or holes in non-round parts that still have tight concentricity requirements.
Low concentricity in some applications can weaken sidewalls, lead to mismatched holes, or force producers to scrap parts. Adding a counter-rotating process on deep-hole drilling equipment allows manufacturers to economically achieve critical tolerances.
With the right equipment and setup, counter-rotation is possible for smaller gun-drilled holes or larger, longer, Boring Trepanning Association-drilled (BTA) components.
Getting started
Deep-hole drilling machines, designed to manage accurate counter-rotation in gundrilling and BTA processes, must include suitable components, machined and assembled to maintain superior alignment.
From the machine base to rotating bearing groups and spindles, to tool and workpiece support, the machine must maintain accuracy while moving and hold concentricity tolerances throughout the hole’s depth. For deep-hole machine builders, alignment considerations begin with the base. Counter-rotation may be possible on machines retrofitted with a second rotating group, but they will often need an alignment improvement process which creates additional challenges.
A general starting point for counter-rotation is to allow one-third of the total speed to come from the workpiece and two-thirds of the speed to come from the tool, which can be adjusted for the specific application.
Considerations
The ability to hold improved concentricity tolerances with counter-rotation, which consistently produces a more concentric drilled hole and typically allows higher surface cutting speeds, offers clear benefits in accuracy and efficiency. Manufacturers can increase capability, improve hole tolerances, and optimize productivity while cutting costs and gaining a competitive manufacturing advantage.
Explore the January February 2020 Issue
Check out more from this issue and find your next story to read.
Latest from Today's Medical Developments
- Best of 2024: #10 Article – Designing medical devices for every user
- Best of 2024: #10 News – 4 predictions for 2024: AI set to supercharge robotic automation
- Children’s National, FDA collaborate to advance pediatric device regulatory tools
- LK Metrology’s eco-friendliness CMMs
- Two patents for microfluidic valves
- AMADA WELD TECH’s blue diode laser technology
- Post-IMTS decline in manufacturing technology orders blunted
- ARS Automation’s FlexiBowl 200